GARR TOOL Milling Guide for VHM Series 4-Flute Rougher

ISO Material		SFM (Vc)	CHIPLOAD PER TOOTH (Fz)							
			3/16"	1/4"	5/16"	3/8"	1/2"	5/8"	3/4"	1"
S	NICKEL BASE ALLOYS									
	High Temperature Alloys: Inconel 625/718, A286	100 - 175	.0007"0010"	.0008"0010"	.0010"0015"	.0010"0015"	.0010"0015"	.0012"0020"	.0015"0025"	.0015"0025"
	TITANIUM ALLOYS									
	Titanium: 6AL4V, CP	150 - 200	.0008"0010"	.0010"0015"	.0010"0020"	.0015"0020"	.0020"0030"	.0025"0030"	.0030"0035"	.0030"0040"
M	STAINLESS STEELS									
	Stainless Steel: 303	290 - 375	.0008"0010"	.0010"0015"	.0013"0020"	.0015"0020"	.0020"0030"	.0025"0035"	.0030"0040"	.0035"0045"
	Stainless Steel: 304, 316, 400 Series, Kovar, Invar	250 - 300	.0006"0010"	.0008"0015"	.0010"0020"	.0012"0020"	.0015"0020"	.0020"0025"	.0025"0030"	.0025"0035"
	Stainless Steel: 304L, 316L, 8620, 17/4, 15/5, 13/8, PH Mat'l	200 - 250	.0006"0008"	.0007"0010"	.0008"0010"	.0010"0015"	.0010"0020"	.0015"0025"	.0020"0030"	.0020"0030"
P	HIGH STRENGTH TOOL STEELS									
	High Strength Tool Steel: 4130, 4140, A2, D2, P20, H13	250 - 400	.0006"0008"	.0007"0010"	.0008"0010"	.0010"0015"	.0010"0020"	.0015"0025"	.0020"0030"	.0020"0030"
	CARBON STEELS									
	Carbon Steels: 1000 Series	275 - 425	.0006"0008"	.0008"0012"	.0010"0015"	.0010"0020"	.0015"0025"	.0020"0025"	.0020"0030"	.0025"0035"
K	CAST MATERIAL									
	Cast Iron	400 - 500	.0010"0020"	.0010"0020"	.0015"0020"	.0015"0025"	.0020"0035"	.0025"0035"	.0030"0040"	.0040"0050"

	Slotting	Profiling		
Axial (ap)	0.5xD	2xD		
Radial (ae)	1xD	0.2xD		

NOTE - ABOVE ARE STARTING PARAMETERS ONLY. HIGHER RESULTS MAY BE ACHIEVED WITH OPTIMUM CONDITIONS.