GARRTOOL High Performance Milling Guide for VX-7,VX-7C (HIGH EFFICIENCY MILLING)

NOTE - DATA DOES NOT REFLECT CHIP THINNING.

SPINDLE INTERFACE MUST BE SCRUTINIZED WHEN USING 5/8" DIAMETER AND LARGER END MILLS

	ISO Material	HRC	SFM(Vc)	CHIPLOAD PER TOOTH (Fz)				
				3/8"	1/2"	5/8"	$3 / 4{ }^{\prime \prime}$	$1 "$
S	COBALT BASE ALLOYS							
	Haynes 25/188, Stellite 21, Cobalt Chrome	$\begin{aligned} & <40 \\ & >40 \\ & >40 \end{aligned}$	$\begin{aligned} & 120-240 \\ & 100-195 \end{aligned}$	$\begin{aligned} & .0013^{3} .0006^{\prime \prime} \\ & .01010 \end{aligned}$	$.0019^{-00366^{\prime \prime}}$	$\text { .0017". } 0.000^{\prime \prime} "^{\prime \prime}$	$.0026^{2} .0052^{1}$	
	NICKEL BASE ALLOYS							
	Inconel-625/718, Waspaloy, Invar, Rene, Hastelloy, Monel	$\begin{aligned} & <40 \\ & >40 \end{aligned}$	$\begin{aligned} & 120-240 \\ & 100-195 \end{aligned}$	$\begin{aligned} & .0013^{3} .0006^{\prime \prime} \\ & .01010 \end{aligned}$.001 " $^{-0036 " 1}$		$.0026^{\circ} .0052^{\circ}$	
	IRON BASE ALLOYS							
	A286, Discaloy, Haynes 556, Carpenter 22, Greek Ascolloy	$\begin{aligned} & <40 \\ & >40 \end{aligned}$	$\begin{aligned} & 120-240 \\ & 100-195 \end{aligned}$	$.0013^{-0} .026^{\prime \prime}$	$.0019^{\prime \prime}-.0036^{\prime \prime}$	$.00217^{0.0} 0.043^{\prime \prime} 0^{\prime \prime}$		
	TITANIUM ALLOYS							
	Commercially Pure, 6Al-4V Astm 1/2/3,6Al-25N-4Zr-2Mo-Si		260-490	.0014. 0028	0021".00	.0026'0.048 ${ }^{\text {a }}$.0042".0080"
	5553/Beta Titanium		195-365	.0014-0026"	.0021" -0036"	.0026 - .0043	.0028 - 0052	. 00421 '.002
M	STAINLESS STEELS							
	138, 155, 17-4, phitpes	<40	290-490 $225-360$.0013".026"	.0019 ". 0036^{11}	.00272'.0043 ${ }^{\text {a }}$.0338 0 . $00777^{\prime \prime}$
	300 Seies, 304, Nitronic 50,	$\bigcirc 40$	${ }_{325}^{2520}$.0013 $-00022^{\prime \prime}$.0019 -0036"	.0022	.0026":0052"	.0038 ${ }^{\text {cosen }}$
	Duplex, Super-Assentic	>40	225-360	.0010" $0.024^{\prime \prime}$.0014".0031"	.0017'0.039	.0202".0048"	.0028".0062"
	400 Series -403,40, 42, 455	<40		(0013".028"	.00994-0.0334 0 "		. $00275^{40} 0.0055^{\prime \prime}$.003888.0076080
HIGH STRENGTH TOOL STEELS								
P	A2, $2,2280,413,57,01$	$\begin{aligned} & <40 \\ & >40 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 290-520 \\ 195-425 \end{array} \end{aligned}$			$.0026^{\circ} .0046^{\circ}$.0322". $0055^{\prime \prime}$	$\begin{aligned} & .0048^{2.0076} \\ & .00044^{40} 0.062^{\prime \prime} \end{aligned}$
	MEDIUM ALLOY TOOL STEELS							
	4140, 4340, 52100,6150, 820	$\begin{array}{\|l\|l\|l\|l\|} \hline 40 \\ >0 \end{array}$	$\begin{aligned} & \begin{array}{l} 455-650 \\ 325-490 \end{array} \end{aligned}$		$.0024^{4 \prime} .0040^{\prime \prime} .$	$.0026^{.0} 0.040^{\circ} 0.020^{\prime 0}$	$\begin{aligned} & .0032^{\prime \prime}-.0058^{\prime \prime} \\ & .0028^{\prime \prime}-.0048^{\prime \prime} \end{aligned}$	$\begin{gathered} .0048^{\prime \prime}-.0080^{\prime \prime} \\ 0044^{\prime \prime}-0066^{\prime \prime} \end{gathered}$
	CARBON STEELS							
	1000's-1018, 1020, 121/4	<40	490-780	.0061".0330	.0024"-.004"	.002" ${ }^{\prime \prime}$.00	.03232.00	.004" .008
K	CAST MATERIAL							
	Ductile lon		455-685	.00188.0031"	292".0066"	.0031"-003	.0036".003	1058".002
	Gray Ion		585-770	.0019 - $0033^{\prime \prime}$.0031".0048"	.0034". O05 ${ }^{5}$.0038 ${ }^{\text {P }} 0064^{\prime \prime}$.0622-.

	Profile/Trochoidal Milling
Axial (ap)	up to $2 \times \mathrm{D}$
Radial (ae)	$5 \%-15 \%$ of Dia.

NOTE - ABOVE ARE STARTING PARAMETERS ONLY. HIGHER RESULTS MAY BE ACHIEVED WITH OPTIMUM CONDITIONS.

